

mail info@moriniebossitools.com tel 0422 824645

Svasatori

I nuovi svasatori Ruko a prestazione elevata, le scanalature e l'affilatura avvengono per mezzo del processo CBN in materiale pieno temprato. La CBN (Barnite Cubica Cristallina) è molto più dura del tradizionale materiale rettificante come il carburo di silicio o il corridone. Questa caratteristica durante la rettifica conferisce all'utensile l'alta qualità i taglienti sono più precisi e più affilati. Adatti per una svasatura senza spigoli e senza vibrazioni. Indicati per acciaio, leghe leggere e leghe non ferrose. Massimo risultato con una velocità di taglio bassa.

E' l' utensile ideale per tutti i lavori di svasatura; sia esso impiegato nell' industria elettronica, nelle tecniche sanitarie e di riscaldamento, nell' industria automobilistica, della costruzione di macchinari, quadri elettrici, mobili; nonché nell' industria aeronautica.

E' l' utensile più robusto adatto per tutti i materiali industriali commerciabili, come ad esempio i metalli ferrosi, le lamiere di metalli nobili, le materie sintetiche termoplastiche e duroplastiche, cosí come tutte le lamiere in ferro commerciabili.

Gli svasatori DIN 335 sono principalmente adatti per la svasatura di forme A e B nell' esecuzione fine DIN 74.

Attraverso l' utilizzo dello spray e della pasta da taglio RUKO la durata degli utensili puó essere notevolmente prolungata.

Panoramica sui simboli

Acciaio rapido

Gambo: Attacco conico morse

Angolo di svasatura: 90°

Superficie lucida

Acciaio rapido con 5% di cobalto, lucidato

Gambo: cilindrico

Taglienti: foro trasversale

Superficie: nera

Metallo duro

Gambo: tacca di fissaggio tripla

Taglienti: 1

Rivestimento TiAIN

Taglio destrorso

Codolo punta: 6,35 mm x 27,0 mm

Taglienti: 3

Rivestimento TiN

Tolleranza: h8

Affilatura a tazza affilatura normale

Angolo di spoglia: 118°

Per alluminio

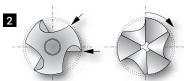
del prodotto

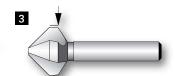
1 Scanalature di scarico trucioli rettificate CBN in profondità.

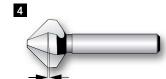
Le scanalature per rettifica CBN sono, al contrario di quelle fresate, più affilate e senza sbavature per ottenere un miglior rendimento di taglio e maggiore durata. Gli svasatori rettificati offrono la massima asportazione del truciolo, un funzionamento regolare ed una superficie esente da imperfezioni, hanno inoltre le migliori caratteristiche di centratura.

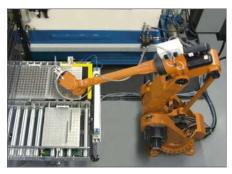
2 Rettifica CBN a spoglia in modo radiale

Tramite la rettifica CBN con un angolo di spoglia radiale il tagliente é il punto piú alto del diametro.


3 Angolo di spoglia assiale rettificato CBN.


L' angolo di spoglia assiale garantisce un taglio pulito grazie ad un minimo sviluppo di calore.


4 Rettifica CBN con angolo di spoglia inferiore.


Ogni grandezza di diametro riceve sul suo perimetro un angolo di spoglia inferiore. Per cui anche il diametro più grande del tagliente é il punto più alto.

mail info@moriniebossitools.com tel 0422 824645

Panoramica sull'articolo e sul suo utilizzo:

Materiale	Lucida	DIN	Forma	Angolo di svasatura	Taglienti	Gambo	Ømm	No. articolo	Altro	Pagina
HSS		DIN 335	C	90			4,3 - 40,0 mm	102 101 - 102 174		126 - 128
HSS	K	DIN 335	C	90			6,3 - 31,0 mm	102 107 A - 102 125 A	für / for ALU	126 - 128
HSSE Co 5	K	DIN 335	C	90			4,3 - 31,0 mm	102 101 E - 102 125 E		126 - 128
HSS	TiN	DIN 335	C	900			4,3 - 40,0 mm	102 101 T - 102 174 T		126 - 128
HSS	TIAIN	DIN 335	C	90			4,3 - 40,0 mm	102 101 F - 102 174 F		126 - 128
TC	K	DIN 335	C	90			6,3 - 31,0 mm	102 261 - 102 268		126 - 128
ASP		DIN 335	C	90			6,3 - 31,0 mm	102 107 ASP - 102 125 ASP		129
HSS	K		C	90		3	6,3 - 31,0 mm	102 707 - 102 725	QUICK	130 - 131
HSS	TIAIN		C	90		3	6,3 - 31,0 mm	102 707 F - 102 725 F	QUICK	130 - 131
HSSE Co 5	K		C	90		3	6,3 - 31,0 mm	102 707 E - 102 725 E	QUICK	130 - 131
HSSE Co 5	TIAIN		C	90		3	6,3 - 31,0 mm	102 707 EF - 102 725 EF	QUICK	130 - 131
HSS	K	DIN 335	C	82			1/4" - 1"	102 182 - 102 191		139
HSS		DIN 335	C	90			6,3 - 25,0 mm	102 271 - 102 288		132
HSS	K	DIN 335	D	90			6,3 - 31,0 mm	102 126 - 102 141		133
HSS		DIN 334	C	60			6,3 - 25,0 mm	102 201 - 102 207		134
HSS		DIN 334	D	60			16,0 - 80,0 mm	102 208 - 102 215		134
HSS			C	75			6,3 - 25,0 mm	102 221 - 102 227		135
HSS	K		D	75		6m2	16,5 - 40,0 mm	102 228 - 102 232		135

Acciaio (N/mm2) < 900	Acciaio (N/mm2) < 1100	Acciaio (N/mm2) < 1300	Acciaio inossidabile	Alluminio	Ottone	Bronzo	Materie plastiche	Ghisa	Lega di titanio
				für / for ALU	Cu Zn	Cu Sn	Plastic		Ti

Panoramica sull'articolo e sul suo utilizzo:

Materiale	Lucida	NO	Forma	Angolo di svasatura	Taglienti	Gambo	Ø mm	No. articolo	Altro	Pagina
HSS	K		C	120			6,3 - 25,0 mm	102 241 - 102 247		136
HSS	K		D	120		0	16,5 - 40,0 mm	102 248 - 102 252		136
HSS	K		C	60	0		6,0 - 50,0 mm	102 501 - 102 510		137
HSS	K		D	60	0		16,0 - 50,0 mm	102 511 - 102 516		137
HSS	K		C	90	0		6,0 - 50,0 mm	102 521 - 102 530		138
HSS	K		D	90		6	16,0 - 50,0 mm	102 531 - 102 536		138
HSS				90			6,3 - 20,5 mm	W102 313 - W102 318		140
HSS	TiN			90			6,3 - 20,5 mm	W102 313T - W102 318T		140
HSS				90			6,3 - 20,5 mm	102 313 - 102 318		141
HSS	TiN			90			6,3 - 20,5 mm	102 313T - 102 318T		141
HSS							1/4 - 20/25	102 301 - 102 305		142
HSSE Co 5	K				(O)		1/4 - 20/25	102 300 E - 102 305 E		142
HSS	TiN						1/4 - 20/25	102 301 T - 102 305 T		142
HSS	K			180°		6	M10 - M22	102 422 - 102 442		143
HSS	K			180°			M3 - M12	102 401 - 102 421		144 - 145
HSS	TiN			180°			M3 - M12	102 401 T - 102 421 T		144 - 145
HSS		DIN 8376 DIN 8376	N	90			M3 - M12	102 601 - 102 619	118°	146
HSS	×	DIN 8374 8376 DIN 8378	N	90			M3 - M12	102 620 - 102 638	118°	147

Acciaio (N/mm2) < 900	Acciaio (N/mm2) < 1100	Acciaio (N/mm2) < 1300	Acciaio inossidabile	Alluminio	Ottone	Bronzo	Materie plastiche	Ghisa	Lega di titanio
				für / for ALU	Cu Zn	Cu Sn	Plastic		Ti

